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The purpose of this paper is to illustrate the potential usefulness of symbolic manipula- 
tion languages in solving problems of physical interest. As an example, we developed 
a regular perturbation solution to the equations describing the motion of a liquid 
droplet, freely suspended in a time dependent shear flow, when both fluids are New- 
tonian and incompressible. Since the successive equations of the problem become 
increasingly complicated, the recent language, REDUCE 2, was used to perform 
automatically most of the routine algebraic computations, thereby extending an existing 
analysis to higher order in the perturbation parameter. 

1. INTR~DIJCTI~N 

An exciting development in the use of computers which, to date, does no appear 
to have received the attention it deserves, involves the application of symbolic 
manipulation languages to obtain analytic (i.e. non-numerical) solutions to many 
equations arising in fluid mechanics and in other branches of mathematical physics. 
Recent software developments include MATHLAB [I], SYMBAL [2], FORMAC 
[3] and more particularly, REDUCE 2,l which was the one used in the presented 
study. 

REDUCE is a program completely written in REDUCE language apart from a 
few LISP primitive functions. It can then easily be modified and extended by those 
having a knowledge of the system, independently of the type of computer 
used. Its numerous features render it a very powerful tool for performing general 
algebraic computations. In particular, its capabilities include arbitrary precision 
arithmetic, expansion and ordering of rational functions of polynomials, calculation 
of the greatest common divisor of two polynomials, automatic and user controlled 

*Present address, Universite de Technologie de Compiegne, Compiegne, France. 
1 A first version was released in 1967, and the new improved one in 1970. Both were developed 

by Hearn [4], and are available on the IBM 360 series computers, the Digital Equipment Cor- 
poration PDP-10 and the CDC 6400 series. 
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simplification of expressions, calculations with symbolic matrices, and a high 
energy physics package with spin l/2 and spin 1 algebra. REDUCE is also provided 
with a set of general substitution commands, which add greatly to the flexibility 
and power of the language. For example, those features can be taken advantage of 
to integrate expressions (provided the values of the indefinite integrals are known), 
to manipulate trigonometric or special functions whose properties are defined by 
the user, to taken the Laplace or Fourier transform of expressions, etc. This 
language can also be used effectively to perform repetitive algebraic computations, 
for example to evaluate the analytic expression of Legendre polynomials, or to 
develop a regular perturbation analysis of a nonlinear problem. In both cases, 
we are limited essentially by computing time or storage considerations. 

Perhaps, the most obvious potential applications of REDUCE in fluid mechanics 
occur when a formal solution to the equations of motion is available, as in the case 
of inviscid or creeping flows. For example, in the second instance, a general 
expression for the velocity and stress fields has been derived by Lamb [5], e.g. 

where cijX is the permutation symbol. Also, Einstein’s summation convention is 
adopted and X, , @, , P,, are solid spherical harmonics typically defined as 

with 
r = (xlxp. 

The tensors Tzllga..l, are chosen to be invariant under any permutation of their 
indices and to have a zero contradiction with respect to any two indices. Thus, the 
expression of the harmonics becomes 

tD, = (--l)n (2n - 1)(2n - 3) a*. 3.1 T&,...l, xtlxlz *a* x1,, 

CDenml = (-1)” (2n - 1)(2n - 3) .** 3.1 Tlllr...rn x”?+~~;x”n . 

To complete then the analysis of a creeping flow problem, whose solution can be 
represented by the linear combination of spherical harmonics shown in (1.1), it 
is necessary to determine the foregoing tensorial coefficients by satisfying the 
boundary conditions. This process, which often involves tedious algebraic mani- 
pulations can be efficiently handled using REDUCE. 

We chose as an example the motion, under creeping flow conditions, of a single 
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droplet freely suspended in a time dependent linear shear field, when the fluids 
involved are Newtonian and incompressible. The mathematical formulation of the 
problem and the method of analysis will now be briefly described and be followed 
by an outline of the program that was designed to obtain the solution. 

2. THE PHYSICAL PROBLEM 

The Reynolds number of the disturbance due to the drop is assumed to be small 
so that inertia effects can be neglected. Three boundary conditions are imposed at 
the surface of the droplet: continuity of the velocities and the tangential stresses, 
with the difference in normal stresses balanced by surface tension. 

The flow problem is thus defined by the following nondimensional equations, 
referred to a set of axes moving with the center of the drop. Equation of the surface 
is 

r = (xixp = 1 + ej- (9, +, +) . 

Equations of motion are 

(2.1) 

auk (-) 
- = 
axk 

for 0 < r < 1 + cf, 

for r > 1 + $ 

(2.2) 

(2.3) 

Boundary conditions are 

Ui - Ui* = 0, 

un - &af kk- at 9 at r = 1 + l f 

(2.4) 

(2.5) 

where 

CPU - Ap;) nj = nik 

Ui + eilxl + +iklWkXt as r-+00, (2.7) 

K = a@ - 4 -1 
axi ’ 

k--f-, 
poGa 

X2$ 
PO 

The notation of Frankel and Acrivos [6] is adopted here and is summarized below: 
po, viscosity of the suspending fluid; II*, viscosity of the drop; a, surface tension; 
a, radius of the undeformed drop; G, magnitude of the shear rate; e, , wi, rate of 
strain, vorticity of the undisturbed flow field; pij , Ui , stress, velocity in the flow 
field; ni , unit vector directed along the outer normal to the surface of the drop; 
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RI, R, , principal radii of curvature of the surface of the drop; &, Kronecker 
symbol. All starred quantities refer to the discrete phase. 

The velocities and stresses are given by Lamb’s general solution (e.g. Eq. (1.1)). 
By requiring the velocity to be finite at both r = 0 and r --j co, this solution 
simplifies further in that it involves only positive order harmonics inside the droplet 
and negative order harmonics in the suspending medium (except for a contribution 
from x1 and @>, which follows readily from the boundary condition (2.7) at infinity). 

Correspondingly, the functionf, describing the surface of the drop, is expanded 
in terms of surface spherical harmonics: 

f= 5 *n. (2.8) n=o 
Because the unknown tensorial coefficients are very difficult to determine in the 

general case, only small deformations of the drop will be considered here. The 
problem can then be linearized by application of a standard regular perturbation 
technique. This procedure has alrealy been used, among others, by Chaffey, 
Brenner, and Mason [7], by Cox [8], and by Frankel and Acrivos [6], who have 
provided details of the method. The parameter E, appearing in the equation of the 
surface, is supposed to be much smaller than unity, and, as shown by Cox, is 
O(W) when k > 1 and A is O(l), or &I-l) when X > 1 and k is O(1). All quantities 
of interest are expanded in terms of B, hence the function f, describing the surface 
of the drop, becomes 

f= pJ' + Ef"' + aaf@) + O(E3), 

where f(O), f(l), and f@) are sums of surface harmonics. Similar expansions apply 
for the remaining variables, e.g. ui and pij . 

At each step of the perturbation analysis, a linear system involving the coefficients 
of the harmonics results when Lamb’s expressions for the velocities and stresses 
inside and outside the drop are inserted into the boundary equations. For example, 
the matching of the velocities yields the following equation in the O(E) 
approximation: 

EZGJ~(BZ + &JG~) + Az~XZ%W% + A&l + C~m~~AaX&o-% 
+ Gzmpwmxzr = ~zm(kwr~ + %JX,) xzxm , (2.9) 

where the A’s, and B’s and c’s are linear combinations of the unknown O(E) 
tensors, whereas the D’s and F’s are linear combinations of O(1) tensors for which 
a solution has already been obtained. In this form, however, (2.9) is not readily 
amenable to solution, because it is evaluated at r = 1 and the x’s are, thus, not 
independent. Frankel and Acrivos, therefore, developed a method for transforming 
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such local relationships into algebraic equations. It consists chiefly of suitably 
integrating these expressions over a unit sphere, S, and taking advantage of the 
orthogonality conditions 

s S 
xixi dQ = f Si, , j 

s 
xjx~xzx,,, dJ2 = -$- (iQzm + 6iz6j, + 6jz6,m), etc., 

(2.10) 
where di2 is a solid angle. Thus, when (2.9) is first multiplied by xj dn, then 
integrated over S, it becomes, by virtue of (2.10), 

gziSBz + i Ai, + A& = $ Sd(FizDzf) + $ FjzDii + isotropic terms. (2.11) 

No higher order tensors are involved in the above because they appear only in the 
form Czm,, jz im 6 6 sea which reduces to CiiPD and, therefore, vanishes as a conse- 
quence of the zero contraction requirement. Terms multiplied by & are called 
isotropic, and the symmetric deviator of a second order tensor is defined by 

Similarly, multiplication of (2.9) by XiX,Xb &I followed by integration, results 
in another equation of the form 

A,, + A& = (4/7) Sd(FazDz,) + (4/7) Sd(FazD;tJ. 

To obtain a relationship between the fourth-order tensors, the same procedure 
is applied except that the multiplication factors are changed to xjx,xb dsz and 
&x$x&,& uX2. This yields, respectively, 

l ZiJL + Ezia%i + ~d%a + (4/3) Gab + 3Gab 

= (4/9) Sd,(Fi,D,,) + FaaDli + F,,D& + FbjDii + isotropic terms, (2.12) 

where to any fourth-order tensor AUab is associated its symmetric deviator, a 
quantity which is perfectly symmetric, has zero contraction and is, thus, defined as 

Sd4(Aiiab) = (l/8){Auab + Aiabi + 22 other terms 
- (2/7)[&,(A,zz + Aizjz + 10 other terms) + 5 other terms] 
+ (8/35)(& b + Sin SW + 6, b)(Azzmm + Azmz, + AzmmzN. 
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Continuing in this fashion and applying all the remaining boundary conditions 
leads then to a set of linear algebraic equations for the tensor coefficients appearing 
in the general solution. 

3. AN OUTLINE OF THE REDUCE PROGRAM 

As is evident from the above, the proposed method of solution, although straight- 
forward in principle, can become rather impractical if the various algebraic 
equations relating the tensorial coefficients, e.g. (2.12) must be derived analytically 
by hand, since it is humanly impossible to avoid making mistakes, for example 
sign errors, which are hard to detect. It was decided, therefore, to perform most 
of the algebra involved in the successive steps of the solution using REDUCE. 
Our aims were twofold: first, to eliminate the human error element from tedious 
routine calculations such as those involving the sum and product of rational 
fractions; and, more importantly, to check the power and capabilities of such 
symbolic languages when tested against real physical problems. 

The program was run on a PDP-10 time-shared computer, in a totally interactive 
mode. The tensorial coefficients of the various harmonics were considered as 
symmetric functions of their indices. The special properties of the Kronecker 
symbol could be easily implemented by defining a set of general substitution 
commands whereby Ail 6lj was systematically replaced by Aij . 

The program began with the evaluation of the velocity and stress fields from 
Lamb’s general solution, using the differentiation and simplification capabilities 
of REDUCE to compute the derivatives appearing in (1.1). Next these values 
were substituted into the appropriate boundary conditions. The O(1) problem 
was solved first, and the computed values of the corresponding O(1) quantities 
were inserted into the O(E) equations. These were solved in turn, yielding 
expressions for the O(E) tensors. Finally the U(1) and O(E) terms were replaced by 
their values in the O($) equations which were then solved to yield the O(E~) 
tensors. 

An important feature of REDUCE, namely its ability to perform substitutions 
in a wide variety of forms, was found very useful for the purpose of integrating 
the various boundary conditions. Indeed, since all the integrals are already known 
from (2.10), it is possible to simply reduce the integration step to a series of substi- 
tution commands. For example, Fl,D,,xlx~x,x,,xix, dQ can be replaced by 
(477/105) F,,D,,(&, a,, aij + -.*) which can then be simplified and evaluated. 
Unfortunately, this straightforward procedure tends to generate enormous inter- 
mediate expressions because the number of terms increases exponentially with 
the order of the integrals. To avoid the resulting waste of storage space and 
computing time, it was noted that the symmetric/antisymmetric part of the 
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integrated equations could be obtained by considering separately the symmetric/ 
antisymmetric part of each individual term. Accordingly, each integral was 
evaluated by hand, partitioned into a symmetric and an antisymmetric part, and 
expressed in terms of deviators and isotropic terms. Therefore, in the above 
example, F~,D,gX~X~x,X~XiXj ds2 is directly replaced by 

or by zero, depending on whether the symmetric or the antisymmetric part of the 
corresponding equation is computed. The resulting system of linear equations 
was of rank 4 only, and the matrix inversion routine could thus be used to solve it, 
with no substantial loss of efficiency. Throughout the program, the coefficients of 
the various tensorial quantities were complicated rational fractions, sometimes 
involving polynomials of degree 7, with integer coefficients of order 1012. An 
automatic simplification of those expressions could be easily obtained by taking 
advantage of the greatest common divisor routine. To illustrate the type of results 
obtained from this program, we present here as an example the differential equation 
for the coefficient Fij of the harmonic #2 which appears in (2.8), the equation for 
the shape of the drop, for the case E = k-l < 1 and X = O(1): 

F, + (2X + 3)(19X + 16) Ml =i, 25 400 + 1) k [at + 9 (Q,#‘L, + ~&i] 
[ 

19h + 16 _ (11172h* + 18336X9 + 17440X2 + 3499A - 7572) 
24(X + 1) 980(2X + 3)2 (A + 1) 

x k-“Ft,Fc,,, 1 e,j 

_ 
[ 

(A - 1)(22344A3 + 52768X2 + 45532X + 19356 ) F e 
980(2h + 3)2 (A + 1) Lml Lm 

+ 245(2h + 3)2 (19x + 6)2 (10x + 11)(17x + 16)(X + 1) I k-2Fi5 

+ (4X - ')(lgx + 16) k-lCJj(e.#'f) 
28(2X + 3)@ + 1) ’ 

+ 36(137h3 + 624X2 + 741X + 248) 
35(2X + 3)(19h + 16)(X + 1) 

k-?!Td(FilFz,) 

+ 6(X - 1)(2793x3 + 7961A2 + 8474X + 3522) k-2Sd(ei&,mF,j) 
245(2A + 3)2 (A + 1) 

- 10(43x2 + 79’ + 53) k-2F.. e 
3(2X + 3)(X + 1) ULrn Lm 

K,@) k-2FmFz, 
+ (2X + 3)(19h + 16)(10X + 11)(17X + 16)(h + 1) + O(kd)’ 
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where 

C,(h) = 2127976h’ - 16341920P - 38494964h5 + 122942551h4 + 474068311h3 
+ 591515680A2 + 332123136h + 71700480, 

and 

C,(A) = 405260X5 + 2366960X4 + 9142173P + 8595967X2 + 333416Oh + 693760. 

All the terms in the above equations are dimensionless, and Fijlm is the coefficient 
of the tip harmonic which obeys a similar relation. The expression for all the O(c) 
tensors, and those for the O(G) tensors of rank two are given by Barth&Biesel [9]. 

Thus, using REDUCE, an analytic solution was obtained to a problem which, 
due to its complexity, appeared quite untractable if done by hand. Of course, 
no claim is made that this is the first time a symbolic language has been used to solve 
a physical problem. In fact, we should mention the contribution of Campbell 
and Hearn [lo] in quantum electrodynamics and the work of Howard and 
Tashjian [ll], who used FORMAC to generate automatically the equations of 
mathematical physics (e.g. the Navier-Stokes equations) in any curvilinear 
coordinate system. 

In conclusion, it seems that many physical problems could be successfully solved 
using REDUCE, or FORMAC, or some other general purpose symbolic language. 
For example, the same problem which was considered here could be studied for 
the case of potential flow. Another interesting application of REDUCE would 
consist in generating automatically a power series solution (e.g. Blasius series) to 
the boundary layer equations [12], for a variety of bodies and outer velocity 
profiles. 

Thus, it appears that, before too long, REDUCE or some suitable modification 
thereof, will evolve into a standard tool for performing most of the routine analytic 
manipulations that, to date, have been commonly carried out by hand for many 
problems in mathematical physics and in fluid mechanics. 
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